

© Copyright 1999 Lotus Development Corporation. All rights reserved. Printed in the United States.

Lotus and Lotus Notes are registered trademarks and Domino and Notes are trademarks of Lotus
Development Corporation. Other product or brand names may be trademarks of their respective
companies.

Contents

15Recommendation .

14Implication .

14Background .

14Hide-When Techniques .

13Recommendation .

12Implication .

12Background .

12Custom Authentication Using @Password .

11Recommendation .

11Implication .

11Background .

11CGI Variables .

8Recommendation .

8Implication .

8Background .

8Agents .

7Recommendation .

6Implication .

6Background .

6Form Formulas .

5Recommendation .

5Implication .

5Background .

5Hidden Views .

4Recommendation .

4Implication .

3Background .

3View Templates .

2Recommendation .

2Implication .

2Background .

2Database Web Launch Properties .

1Introduction .

22Security Assessment .

21Server Environment Considerations .

21Development Considerations .

20Fundamentals .

20Conclusion .

19Recommendation .

19Implication .

19Background .

19Unwanted Searches .

18Recommendation .

18Implication .

18Background .

18“No Access” Rights to Site Databases .

17Recommendation .

17Implication .

17Background .

17CORBA/IIOP .

16Recommendation .

16Implication .

16Background .

16Disable Server Browsing .

Introduction

As the popularity of Lotus® Domino™ as a Web application development platform
grows, we can expect to see an increased awareness about techniques for properly imple-
menting the Domino Security Model. Domino contains a vast array of design features
and capabilities that allow developers to create innovative Domino Web applications.
However, if security is an objective, then the features that are used must be selected
specifically to provide the desired security. The only way to ensure a secure Domino
Web application is to adhere to the Domino Security Model during the development
process. Controlling access to documents using field-based access controls is necessary
for every Domino Web application.

This paper discusses some advanced Domino development techniques, and therefore
assumes that readers have a solid working knowledge of Domino application develop-
ment. Each technique described includes an explanation of the Domino Security and
deployment implications as well as a recommendation of the proper development
method to ensure security.

The main topics covered in this paper include secure Domino Web application design,
database access control lists, view level security and document level security. For a good
understanding of these topics, read the following titles, available at http://www.notes.net/
today.nsf unless stated otherwise, before proceeding with this paper:

� Lotus Notes® and Domino R5.0 Security Infrastructure Revealed
(http://www.lotus.com/redbooks)

� Designing a Secure Domino Application

� Securing Your Application

� The ABC’s of Using the ACL

� Filtering Data for Domino Web Users

� Technique #3: Readers Fields (sidebar)

Lotus Development Corporation A Guide to Developing Secure Domino Applications 1

http://www.lotus.com/redbooks
http://www.notes.net/today.nsf/cbb328e5c12843a9852563dc006721c7/71102330e24a7ce5852564b5005e3682?OpenDocument
http://www.notes.net/lbytes.nsf/308c971706adfdef8525640500696fa8/bade62a338429f13852565cb0071c4a3?OpenDocument
http://notes.net/today.nsf/8a6d147cf55a7fd385256658007aacf1/be08e4acfc72cd72852565d9004cb61c?OpenDocument
http://notes.net/today.nsf/8a6d147cf55a7fd385256658007aacf1/f758ce4ebf6b9e5a8525657100549ae1?OpenDocument
http://notes.net/today.nsf/625c2f03e734191a85256468005e76f6/f4268ab5fe50e95085256571006ef94f?OpenDocument

Database Web Launch Properties

Background
The Database Web Launch properties enable a developer to specify what will be
displayed when a Web user tries to open a database. Typically, the application’s main
home page is displayed. This property executes the launch option specified when
Domino receives a URL request to open the database.

Implication
This property does not prevent users from reconstructing the URL and accessing a list of
non-hidden views in the database. Be aware of the following Domino URL actions that
may be used:

http://host/database.nsf/$DefaultNav?OpenNavigator

http://host/database.nsf/?OpenDatabase&3PaneUI

Note: There is no current way to prevent Web users from using the Domino URL action
/$DefaultNav?OpenNavigator.

Recommendation
Use the following methods to prevent view names from being displayed to the Web
browser when either of the above two Domino URL actions are used.

� Hide the view by surrounding the name of the view with parentheses. Note: Just
hiding a view name does not ensure that documents within this view are secure.
In fact, they are not secure unless document access control (Readers and Authors
names fields) lists and various hide-when techniques have been implemented. For
example, if a user guesses the name of a hidden view, such as “(All),” they will
be able to access the non-secure documents within that view.

� Maintain a view access control list. This method will allow user access only to a
controlled list of users. Consider using Roles and Groups in the view access
control list for ease of maintenance.

� Apply the Design Document property “Hide design element from Web
browsers.” Be aware that this method will prevent all Web user access to this
view and to the documents referenced within this view.

Tip: The /?OpenDatabase&3PaneUI Domino URL action (e.g. http://host/database.nsf/
?OpenDatabase&3PaneUI) can be prevented by adding DominoEnable3PaneUI=0 in the
Domino server notes.ini file. Prior to R4.6, this notes.ini setting was not available. From
R4.6 and above, this setting is on by default.

2 A Guide to Developing Secure Domino Applications Lotus Development Corporation

View Templates

Background
When views are displayed on the Web, they may not have as many features as in the
Notes™ client. For example, by default, a view will display as a full screen with default
navigation buttons on the Web. To gain more control on the Web, it is possible to embed a
view in a form which allows developers to add features that will maintain the same
functionality available in Notes applications, as well as control the size and appearance of
a view display. For a form to display an embedded view, the form name must conform to
certain rules which specify reserved form names. These forms are called view templates.

The following are the reserved form names for views:

� $$ViewTemplate for <viewname>: Where <viewname> is the name of the view
with which this form is to be associated. Note that view alias names must be used
in place of <viewname> if one exists.

� $$ViewTemplateDefault: A form of this name with an embedded view or
$$ViewBody field will be the template for all Web views that aren’t associated
with another form.

Both of these forms also require an embedded view (R4.6.x and higher) or a
$$ViewBody field for the view to be displayed in the form. There are many examples of
uses of view templates in the templates that ship with Domino. One example is in the
R4.6 Discussion database template (discsw46.ntf). This template contains multiple view
templates including $$ViewTemplate for By Category.

When a HTTP request is made to access a Domino view (e.g., http://host/database.nsf/
viewname?openview) Domino first looks for a reserved form name to associate with the
view. If no reserved form name is found, Domino serves the view up in a default format.

For example, if a user clicks on a URL to open the “By Category” view and the Domino
application did not contain either a form called “$$ViewTemplate for By Category” or
“$$ViewTemplateDefault,” Domino would serve the view in default format.

Tip: Notes Pages may be used to create view templates in Release 5.x.

One Domino development technique exists whereby the required $$ViewBody field or
embedded view is omitted from the view template form. This results in no view being
displayed at runtime when the view is referenced. Generally, these empty view templates
contain simple text messages such as “Access Denied” or “No Documents Found” to
prevent users from accessing the view contents. This technique is an excellent deterrent,
and it is recommended to be included in Domino Web applications, but is not considered
part of the Domino Security Model to protect sensitive data. View templates were made
available in Domino to bring additional functionality to the Web, not security.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 3

Implication
With any prior knowledge of the design of the Domino application, a user may
potentially obtain unwanted access to the document level. Thus documents without
access controls in them are left exposed.

Recommendation
To cut off access to documents and prevent the user from bypassing the empty view
template technique, developers need to restrict access to documents by using field-based
access controls. Documents containing confidential and sensitive information need to
take advantage of field-based access controls (Reader and Author fields) in conjunction
with database and view user access controls. For example, one technique might be to
give users access only to data that is specific to them. If a Web order form contains
users’ personal information, such as credit card numbers and expiration dates, this
sensitive data could be placed on a computed subform which is displayed only when the
document is new for data input purposes. Access to the subform would be limited to
those listed in a Readers names field, that is, the user who authored it and those users
who will process it.

4 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Hidden Views

Background
The technique of using views is common in Domino Web applications because such
views provide programmatic access to documents that would not otherwise be available
in an application. Hidden views have their names surrounded by parentheses. For
example, a view named “(All)” is considered hidden. Hidden views are not available via
the View-Go To… menu in the Notes client, nor do they appear in the list of views
presented when the Domino URL syntax is reconstructed using
/$DefaultNav?OpenNavigator.

Note: The following Domino URL syntax will display all non-hidden views to the Web
browser.

http://host/database.nsf/$DefaultNav?OpenNavigator

Implication
Hidden views are not considered part of the Domino Security model and may result in
users accessing sensitive data. Access may be gained to the document level with prior
knowledge of the design of the Domino application. An example might be that of a user
who guesses that you have developed your site with a view name of (All) and then
reconstructs the Domino URL to access documents in that view.

Recommendation
To cut off access to the document level and essentially prevent the user from bypassing
the hidden view deterrent, ensure that access to all documents containing sensitive data is
restricted using field-based access controls in conjunction with database, view and
document user access controls. By doing so, even if the view name is guessed correctly,
Domino will prevent access to the documents containing the sensitive data.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 5

Form Formulas

Background
Another misuse of a Domino feature in place of Domino security on the Web is form
formulas. When a user tries to read or edit a document from a view, that view’s form
formula determines which form Domino will use in presenting the document to the user.
It also controls which form the user will get when trying to compose a new document.

This formula is part of the view design element. For example, the following is a form
formula that will display a document opened from a browser to display an “Access
Denied” error.

@If(!@IsNewDoc ; “AccessDeniedForm” ; “OrderForm”)

Once the document is opened, the Domino URL might look like this:

http://host/orders.nsf/d46f1520006b1d1e852567df006d89bd/16437726bc6934f6852567d
f006df2e8?OpenDocument

Tip: There are three possible Domino URLs to represent the same document URL:

1. http://host/database.nsf/viewname/UNID?action

2. http://host/database.nsf/viewID/UNID?action

3. http://host/database.nsf/0/UNID?action

Note: Any text string may be used to replace the 32-character view ID in a Domino
document URL.

Implication
The third example above is valid and shortens the document URL by replacing the
32-character view ID with a zero. Generally, developers are not aware that by using this
technique form formulas will not be executed and they will effectively be bypassed. This
occurs because the form formula is part of the view design element and by replacing the
view ID with a placeholder (in this case a zero), Domino just displays the document
without going through the view, which would execute the form formula. In the above
example, the URL has been reduced to the following:

http://host/orders.nsf/0/16437726bc6934f6852567df006df2e8?OpenDocument

Domino will proceed to serve the document up to the browser using the form name
contained in the Form field stored in the document. This will potentially expose sensitive
data, if the documents have not been properly secured by implementing field-based user
access controls at the document level.

6 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Recommendation
The correct technique is to use field-based access controls and hide-when formulas.
Placing only the usernames, roles and group names in the Readers field will effectively
prevent all unwanted access to sensitive information. This technique properly covers all
malicious attempts at compromising your data.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 7

Agents

Background
Securing your Domino Web applications is not all about data security. Agents are less
likely to result in unwanted access to your data; however, they are prone to attack.
Typically this results in a denial of service type attacks.

Any attack that prevents a Web client from being served by a Web server is termed a
Denial of Service (DoS) attack. The attack could disable either a client workstation by
taking up excessive CPU cycles, or by hogging memory or other critical resources. It
could also bog down a server with large numbers of time- and CPU-intensive URL
requests, making the server unable to respond to legitimate requests. Agents that are
time- and CPU-intensive are prone to DoS attacks.

Implication
One implication of denial of service attacks is that an agent may be repeatedly invoked
using the ?OpenAgent Domino URL syntax, a Domino server could be made to run
several long agent threads, unnecessarily tying up resources needed for legitimate URL
requests. Another is that an agent could be invoked outside of the scope of its original
intent, possibly causing unwanted modifications to your data.

Users can discover agent names quite easily using the same technique described in the
“Hidden Views” section above.

Recommendation
To protect your agents from potential DoS attacks, you need to prevent the bulk of the
agent code from executing if the agent is being invoked maliciously. A typical practice is
to establish prerequisites to run. These prerequisites, verified at the start of an agent,
determine whether or not the agent is being invoked within an intended context. Only if
the context is valid is the agent allowed to continue; otherwise it is terminated.

You want to be able to prevent users from using the ?OpenAgent Domino action by
themselves. There is no need for any Web user to manually use this Domino URL action.
Select your prerequisites by choosing conditions for the context that cannot be guessed
or simulated easily. Described below are two methods to prevent Web users from
maliciously invoking an agent:

8 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Method 1: Ensure the referrer page is from the same Web server.

When a URL is entered directly in a browser, the referrer indicated by the
HTTP_REFERRER Common Gateway Interface (CGI) variable will be blank. The
following piece of LotusScript code at the start of the agent will prevent users from
invoking the ?OpenAgent action URL directly.

Set session = New NotesSession

Set docContext = session.DocumentContext

REM --

REM Don’t allow invocation of this agent from just any HTTP

REM Referrer. The referrer must be from our server.

REM --

If Not(Instr(1, Ucase(docContext.HTTP_Referer(0)),

Ucase(docContext.Server_Name(0))) > 0) And _

Not(Instr(1, Ucase(docContext.HTTP_Referer(0)),

Ucase(docContext.HTTP_HOST(0))) > 0) Then

Print {<HTML><HEAD><TITLE>Error</TITLE></HEAD><BODY>}

Print {<H1>Error</H1>Unauthorized Exception<P><HR>}

Print {</BODY></HTML>}

Exit Sub

End If

When a user tries to run the agent by directly entering an ?OpenAgent Domino URL
action, it will result in an HTML page stating “Unauthorized Exception.” The key result
is that only a few lines of code are executed before the agent terminates and most
importantly, there is no harm done to your data and Domino environment.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 9

Method 2: Use a hidden computed for display field on a form to trigger an agent.

There is another technique to prevent invocation of agents from any HTTP client. This
one uses the HTTP_REFERRER, SERVER_NAME and HTTP_HOST CGI variables.
The idea behind this technique is to ensure that a hidden computed-for-display field
computes to a predetermined value.

This method involves placing a hidden computed-for-display field on forms that trigger
an agent. The value of the field should compute to a predetermined fixed value. The
following code illustrates such a field, named “ValidContextProof,” and its value
computes to “domino.” You can choose any field name and value.

When the agent is triggered, the document context should contain this hidden field and
its value should be the predetermined fixed value. If this is not the case, the agent should
terminate, since it has not been invoked using an intended context. When a URL is
entered directly in a browser, it is very unlikely that the context will contain a field with
that same name and value. The following LotusScript code placed at the start of the
agent will ensure that the agent continues execution only if the context is valid.

Set session = New NotesSession

Set docContext = session.DocumentContext

REM --

REM Don’t allow invocation of this agent from just any

REM context. The intended context must have a field called

REM ValidContextProof with a value of “domino”.

REM --

If (docContext.ValidContextProof(0) <> “domino”) Then

 Print {<HTML><HEAD><TITLE>Error</TITLE></HEAD><BODY>}

 Print {<H1>Error</H1>Unauthorized Exception<P><HR>}

 Print {</BODY></HTML>}

 Exit Sub

End If

The field is hidden using text paragraph hide-when formulas (as opposed to being a
hidden using the HIDDEN HTML attribute), so Web users cannot see it. It does not
appear in the HTML source for the page. Also, a Web user with malicious intentions
would have to first figure out that such a technique is being used, then guess the name
of the field and additionally the value of the field. This is very unlikely.

When a user tries to run the agent by directly entering an ?OpenAgent Domino URL
action, it results in the same page shown in the previous technique. Again, the key result
is that only a few lines of code are executed and the agent terminates.

10 A Guide to Developing Secure Domino Applications Lotus Development Corporation

CGI Variables

Background
CGI is a standard for interfacing external applications with HTTP servers. When a Web
user saves or opens a document, the Domino Web server uses CGI variables to collect
information about the user, including the user’s name, the browser, and the user’s
Internet Protocol (IP) address. To capture this information in a Web application, you
have two options:

1. Use a field with the same name as CGI variables.

2. Use LotusScript agents.

For a complete listing of the CGI variables supported by Domino, refer to Notes Help
(help4.nsf) or Domino 5 Designer Help (help5_designer.nsf).

Implication
Domino can capture CGI variables through a field or a LotusScript agent and also
capture any CGI variable preceded by HTTP_ or HTTPS. For example, cookies are
sent to the server by the browser as HTTP_COOKIE. However, there are ways to
manipulate CGI variables on the client side and push them to any HTTP server. It cannot
be assumed that CGI variables are secure or that they cannot be altered by Web users.

Recommendation
There are other, more secure alternatives that can be used in place of CGI variables.
For example, instead of using the REMOTE_USER CGI variable, you can use the
@UserName function instead, which is secure and cannot be tampered with.

Also, the @BrowserInfo function (new in Release 5) can be used to determine the
capabilities of a Web client. This information was previously only available via CGI
variables.

The bottom line is that you should not rely exlusively on CGI variables for protection
in your security implementation.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 11

Custom Authentication Using @Password

Background
A common reason for building a custom login function is the need to use an already
existing user-unique entity such as employee number, social security number, etc.,
instead of the username.

Typical implementations involve having users register with the site. Registration requires
the user to supply a username and a password. The entered password is then encoded or
hashed using the @Password function. A document containing the username and the
encoded password is stored for the authentication process. The actual password before
encoding is not stored.

A login interface that prompts the user for the username and password is provided. The
password entered is encoded using @Password and this encoded password is compared
to that stored during the registration process. If encoded passwords match for a given
user name, the user is allowed further access by being routed to another server or
database.

Implication
The @Password function simply encodes a string. @Password is especially useful in an
input translation formula to protect a user’s password from being seen by others. There is
no way to decode the original string once it has been encoded by @Password.

The encoding function is a one-to-one mapping; for example, a password of “lotusnotes”
will always result in “(DE9CA9CD7BD212362B6D312A33E10FB2)” when passed
through @Password.

Developers incorrectly assume that they don’t need to protect the encoded passwords
from being seen by others. Passing the encoded version of a password through
@Password has no effect but returns the input string.

For example,

@Password(“lotusnotes”)

will always return

(DE9CA9CD7BD212362B6D312A33E10FB2)

and

@Password(“(DE9CA9CD7BD212362B6D312A33E10FB2)”)

will always return

(DE9CA9CD7BD212362B6D312A33E10FB2)

12 A Guide to Developing Secure Domino Applications Lotus Development Corporation

If you don’t protect the user names and corresponding encoded passwords of your
registered users, and you don’t accommodate for passwords that could be encoded
passwords in your login implementation, your login function will not be secure. Users
may be able to authenticate using encoded passwords.

Recommendation
Since trustworthy user identities are essential for security, use of the standard Lotus
Notes login functions rather than a custom login function is recommended. However, if
you must use a custom authentication function, take the following precautions to create
a secure implementation:

� Be sure that the user IDs and hashed passwords of registered users aren’t
accessible by any of the techniques described in this paper.

� Don’t allow passwords that are 34 characters long and that start with “(” and
end with “)”. These could represent a hashed password.

� Use the “Upgrade to More Secure Internet Password Format” action in the
“People” view of the Public NAB to upgrade user passwords to a more
secure Internet password format. This action runs an agent entitled
“(SetNewPasswordFormat).” Note: By doing so, clients will only be able
to access 4.6 servers and above.

Be sure that any field validation involving usernames and passwords will run in a secure
fashion; i.e., it should not be implemented using client-side JavaScript or any other
client-side technique. Typical field and form validation on Web clients is done for
convenience and to reduce server load. Since in these cases there aren’t any security
concerns, client-side JavaScript is typically used. In the case of a login function, you
should implement the validation on the server side to protect it from being manipulated
at the client.

Ultimately, avoid building your own login. Use the standard Domino authentication,
which is secure. For a complete explanation of Domino authentication,see the Lotus
Notes and Domino R5.0 Security Infrastructure Revealed redbook, which is available
at http://www.lotus.com/redbooks.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 13

Hide-When Techniques

Background
There are many hide-when techniques in use today designed to prevent Web users from
seeing certain pieces of information. Typically, insecure documents contain confidential
pieces of the information that should be hidden or removed prior to displaying to a Web
user. The most common of these hide-when techniques are:

1. Hide-when… formulas

2. WebQueryOpen agents

WebQueryOpen agents, for example, run before Domino converts a document to HTML
and sends it to the browser. This gives the developer the opportunity to make changes to
the document before it is displayed to the Web user. Clearing fields containing
confidential information has become a common use for these agents. The following is an
example of a LotusScript WebQueryOpen agent that clears the CardType, CardNumber,
and Expiry fields before displaying a document to a Web user.

Sub Initialize

 Dim session As New NotesSession

 Dim docContext As NotesDocument

 Set docContext = session.DocumentContext

 REM Clear Credit Card fields so that they will not

 REM be displayed to Web users.

 Call docContext.ReplaceItemValue(“CardType”, ““)

 Call docContext.ReplaceItemValue(“CardNumber”, ““)

 Call docContext.ReplaceItemValue(“Expiry”, ““)

End Sub

Implication
Developers assume that Web users have no way to get to the contents of the documents
without going through the hide-when logic. This is usually true unless the hosting server
supports the Internet Inter-ORB Protocol (IIOP) protocol, which enables remote Java
invocation of Domino Object Model. Be aware that enabling the DIIOP server task in
combination with allowing for server browsing may permit a malicious attack on your
Domino server to occur.

14 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Recommendation
The simple solution in this case is to not enable the DIIOP server task in combination
with allowing for server browsing. The majority of situations will fall into this scenario.
However, this will not address any other topics discussed in this paper. Ultimately, the
secure technique is to use field-based access controls in conjunction with database, view
and document user access controls. Placing only the usernames, roles and group names
in the Readers field will effectively prevent all unwanted access to sensitive information.
This technique properly covers all malicious attempts at compromising your data.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 15

Disable Server Browsing

Background
Databases must be in the \Data directory or a subdirectory off the \Data directory of your
Domino server in order to be accessed by a URL command, except in the case of server
commands such as ?OpenServer.

Implication
Enabling server browsing provides users with links to all databases on the Domino
server. Any Web browser can view a list of every database in the \Data directory or a
subdirectory off the \Data directory if the server is configured to allow this action. In
most cases, server browsing is undesirable.

Note: Server browsing only provides a list of links to databases. It does not provide any
additional access rights to the user. For a user to access any of the databases listed, the
database ACL must be configured to allow access.

Recommendation
Server browsing is preventable by setting the “Allow HTTP clients to browse databases”
field in the server document to ‘No.’

Note: By default, the “Allow HTTP clients to browse databases” field in the server
document is set to ‘Yes.’ Now, Web users cannot see a list of databases, although they
can still open individual databases to which they have access. Hiding the list of databases
is useful if you have virtual servers on one machine or if some databases aren’t for
Web use.

16 A Guide to Developing Secure Domino Applications Lotus Development Corporation

CORBA/IIOP

Background
With Release 5.0 we have introduced an architecture called CORBA (Common Object
Request Broker Architecture) into Domino. This is an open standard defined by the
OMG (Object Management Group). The OMG is an industry standards body with over
800 worldwide participants, including IBM.

CORBA serves as middleware and facilitates the design and implementation of distrib-
uted systems by providing a transport through which distributed objects can locate and
exchange data with each other. It also provides language, operating system, hardware
platform and networking interoperability. The transport protocol for CORBA communi-
cation over a TCP/IP network is IIOP (Internet Inter-ORB Protocol).

CORBA is supported by IBM, Netscape, Oracle, and Sun, and promoted as an alternative
to Microsoft’s DCOM (Distributed Component Object Model).

With respect to Domino, this allows Java programs on remote clients such as applets in
browsers and stand-alone Java applications to access the Domino objects on the Domino
server. From an implementation standpoint, a remote client instantiates and references
DOM objects as if they were resident at the client. In fact, these objects are instantiated
at the Domino server. When the client is referencing these objects, it is actually
communicating with the objects on the server. This is seamless to the programmer.

Implication
Be aware that when a Domino server has the DIIOP task enabled, unwanted attempts to
compromise data security are possible under certain conditions. For example, data could
be compromised by using a stand-alone Java application with CORBA/IIOP to access a
Domino server, create a DBDirectory object and proceed to browse all of the databases
left open, assuming browsing is allowed.

Note: When server browsing is disabled by setting the “Allow HTTP clients to browse
databases” field in the server document to ‘No,’ any unwanted attempts to compromise
data security using a stand-alone CORBA application are not possible.

Recommendation
The simple solution in this case is to not enable the DIIOP server task in combination
with allowing for server browsing. The majority of situations will fall into this scenario.
However, this will not address any other topics discussed in this paper. Ultimately, the
secure technique is to use field-based access controls in conjunction with database, view
and document user access controls. Placing only the usernames, roles and group names
in the Readers field will effectively prevent all unwanted access to sensitive information.
This technique properly covers all malicious attempts at compromising your data.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 17

“No Access” Rights to Site Databases

Background
Every Domino server comes with a number of templates and configuration databases for
installation. These databases are crucial to controlling the Domino environment. Data-
base default ACLs (Access Control Lists) are set with “Designer” privileges. Also, the
default setting for the ‘Max Internet Access’ is set to “Editor” privileges.

Implication
These databases have ACLs that may not be set correctly for your environment. Thus, if
this issue is not addressed prior to deployment, Web users potentially have access to site
databases.

Recommendation
Review the ACL settings for each .NSF file on your Domino server. In addition to
checking the ACL for your application databases, be sure to also check the ACL’s of
system databases such as NAMES.NSF, LOG.NSF, ADMIN4.NSF, DOMCFG.NSF, etc.
Be sure to review every database including MAIL.BOX, AGENTRUNNER.NSF,
BILLING.NSF, BOOKMARK.NSF. In addition, ask yourself these questions:

What is the “-Default-” access control set to?

What is “Anonymous” set to?

What is the Maximum Internet name & password access set to in the Advanced ACL
settings?

Note: If the Web user is being authenticated with Basic authentication (that is, name and
password), the Advanced section of the ACL lets you specify a maximum access setting
for Web users. Even if you explicitly give Web users higher access, they never have an
access level greater than what you specify as the “Maximum Internet name & password
access.”

If the Web user is being authenticated using SSL Client certificates, then the “Maximum
Internet name & password access” field does NOT apply to them. These users have the
full access granted to them in the ACL. In other words, if the access list says that they
have “Manager” access, they truly have Manager access to the database and not the
access specified in the “Maximum Internet name & password access” field.

Tip: It may be easier to write a simple agent that will loop through every database on
the Domino server, add a group name to each database and also set proper rights to
“-Default-” and “Anonymous.”

18 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Unwanted Searches

Background
Domino provides search-related URLs for performing view, multiple-database, and
domain searches. Typically, either a customized search form or the default search form is
presented, which allows users to define their own searches. Developers can then take the
user input and programmatically build Domino Search URL’s to perform text searches
from a Web browser. An example might be:

http://host/db.nsf/view?SearchView&Query=FIELD+Manager+contains+Bob

Implication
It’s possible to reconstruct a Domino URL in order to conduct a search and have the
results returned without using a designated search result form. This circumvents the
control of the developer to contain searches and ultimately makes confidential
documents available to the user.

Recommendation
When a database is full-text indexed and a search page is requested, Domino will first
look for a form in the database named $$Search to display. If this form is not available,
Domino will look for and use a form in the database named $$SearchTemplateDefault to
display. If neither are present, the default search page is used.

Note: The default search form is the search.htm file located in the \Data\Domino\Icons
directory of the Domino server.

Create a form named $$SearchTemplateDefault in your applications. The search
results created outside of the controlled search form will be published using the
$$SearchTemplateDefault form. If the form contains nothing but the text “Search
Access Denied,” the user will see only the text “Search Access Denied,” and documents
will remain secure. This method does not hinder regular search methods; rather it is an
addition for other purposes including security.

The bottom line is that to prevent misuse of database searching, simply include a
$$SearchTemplateDefault with no $$ViewBody field.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 19

Conclusion

This paper has described techniques for using the Domino Security Model when
developing an application intended for Web browsers. To ensure data is accessible only
by those users it was intended for, appropriate concern should be given to security. If you
are developing an application that will conduct business on the Web, you must ask
yourself, “Have I done everything necessary to protect this data?” As an example, if you
are developing an order form to be completed by users who will ultimately enter their
credit card number and expiration date on this form, do you have a Readers names field
on the form? Is this data only accessible to the person who created it and for whom it
was intended?

All of the techniques described above were put in place not as part of the Domino
Security Model, but primarily as part of a set of features intended as a benefit to Domino
developers. Even though they are not considered part of the Domino Security Model,
they do act as an extra layer of security for those who either inadvertently or deliberately
attack a Domino Web application. Developers are encouraged to use techniques such as
hidden views, view templates and form formulas, but only in conjunction with
implementing the fundamentals of the Domino Security Model.

To ensure that your sensitive data is properly protected, follow the summarized lists
below before deploying your Domino Web application.

Fundamentals
1. Fully understand the Domino Security Model and ensure that it is implemented

in your Web applications.

2. Fully understand the Access Control List (ACL) feature.

3. Fully understand field-based access controls AND use them for your Web
applications.

4. Fully understand Domino server, database, view, and document access control
lists, and use them throughout your Web applications.

20 A Guide to Developing Secure Domino Applications Lotus Development Corporation

Development Considerations
1. Protect all views you don’t want accessed, because there are methods by which

Web users can see all your database views.

2. Do not rely solely on View Templates as a secure way to protect your data.

3. Do not rely solely on Database Web Launch properties as a secure way to
protect your data.

4. Do not rely solely on hidden views as a secure way to protect your data.

5. Do not rely solely on form formulas as a secure way to protect your data.

6. Protect your agents from being invoked by Web users by implementing the
techniques described above.

7. Do not rely solely on CGI variables in your security implementation.

8. Be aware that Custom Authentication using @Password may be compromised.

9. Be aware that using an agent as a technique to hide data may be compromised
by using a CORBA/IIOP application.

10. Review the Access Control List (ACL) settings for each data file, including
.NSF, .NTF, .BOX, .NS2, .NS3, .NS4, .NSG, and .NSH files on your Domino
server and set rights accordingly. Set all databases to have Anonymous and
-Default- access privileges set to ‘No Access.’ In this way only validated users
can get into databases. Note: This may not be appropriate for a home page, in
which case use either a separate .NSF file or .HTML file as your home page.

11. To prevent misuse of database searching simply include a
$$SearchTemplateDefault with no $$ViewBody field.

Server Environment Considerations
1. For Domino servers that are located on the Internet, extranet, or outside your

firewall system, put the external Domino server in a separate organization in
case some of your databases have */Org in the ACL, and then cross-certify the
external Domino server with internal Domino servers.

2. Especially for external Domino servers, put a difficult-to-guess password on the
Notes server ID, in case someone manages to steal it off your site. This will
help protect any encrypted databases. Note: The Domino server ID must be
manually unlocked by an administrator when the server starts. In other words,
the server will not restart if unattended.

3. Encrypt all databases with the Notes server ID in case someone manages to
steal your databases. Choose between Simple, Medium and Strong encryption,
keeping in mind that stronger encryption will have an effect on performance.

4. Set all databases to enforce local security, in case someone manages to get the
database and the server ID.

5. Turn off database browsing for Web clients so people can’t reach databases
you didn’t mean to publish.

Lotus Development Corporation A Guide to Developing Secure Domino Applications 21

6. Activate SSL (whether using a self-certified certificate or a certificate from a
Certificate Authority (CA) such as Verisign) to secure your network traffic
with Web clients.

7. Turn on network encryption when Notes clients talk to the Domino server over
the Internet.

8. If you are using the Domino server as a Notes server, put files you don’t want
Web users to access in a directory with a DirLink, and disable Domino’s
DirLink support to allow Notes users to use the DirLinks but not Web users.

9. Be careful with the naming of your database and design elements. Be aware
that your naming convention may be picked up by someone maliciously trying
to access your data.

10. Be aware that enabling the DIIOP server task in combination with allowing for
server browsing may permit a malicious attack on your Domino server to occur.

Security Assessment
After reading this document, should you require a security assessment of your Domino
Web application, IBM Global Services offers Domino-specific Application Security
Assessment and Ethical Hacking services. For more information, please contact
Eriks Taube (etaube@ca.ibm.com) at 416-490-5131.

22 A Guide to Developing Secure Domino Applications Lotus Development Corporation

	Introduction
	Database Web Launch Properties
	Background
	Implication
	Recommendation

	View Templates
	Background
	Implication
	Recommendation

	Hidden Views
	Background
	Implication
	Recommendation

	Form Formulas
	Background
	Implication
	Recommendation

	Agents
	Background
	Implication
	Recommendation

	CGI Variables
	Background
	Implication
	Recommendation

	Custom Authentication Using @Password
	Background
	Implication
	Recommendation

	Hide-When Techniques
	Background
	Implication
	Recommendation

	Disable Server Browsing
	Background
	Implication
	Recommendation

	CORBA/IIOP
	Background
	Implication
	Recommendation

	“No Access” Rights to Site Databases
	Background
	Implication
	Recommendation

	Unwanted Searches
	Background
	Implication
	Recommendation

	Conclusion
	Fundamentals
	Development Considerations
	Server Environment Considerations
	Security Assessment

		1999-11-18T15:42:34-0500
	Carl Kriger
	I am the author of this document

